Point-defect optical transitions and thermal ionization energies from quantum Monte Carlo methods: Application to the F-center defect in MgO
نویسندگان
چکیده
We present an approach to calculation of point-defect optical and thermal ionization energies based on the highly accurate quantum Monte Carlo methods. The use of an inherently many-body theory that directly treats electron correlation offers many improvements over the typically employed density functional theory Kohn-Sham description. In particular, the use of quantum Monte Carlo methods can help overcome the band-gap problem and obviate the need for ad hoc corrections. We demonstrate our approach to the calculation of the optical and thermal ionization energies of the F-center defect in magnesium oxide, and obtain excellent agreement with experimental and/or other high-accuracy computational results.
منابع مشابه
Phase Transitions in a Two-Dimensional Vortex System with Defects: Monte Carlo Simulation
The phase states and phase transitions in a system consisting of a two-dimensional vortex lattice with defects are studied by the Monte Carlo method. It is shown that a “rotating lattice” phase, which is an intermediate phase between the vortex crystal and vortex liquid phases, is present. The dependence of the temperature of the transition from the rotating lattice phase into a vortex liquid o...
متن کاملModeling Fermi Level Effects in Atomistic Simulations
In this work, variations in electron potential are incorporated into a Kinetic Lattice Monte Carlo (KLMC) simulator and applied to dopant diffusion in silicon. To account for the effect of dopants, the charge redistribution induced by an external point charge immersed in an electron (hole) sea is solved numerically using the quantum perturbation method. The local carrier concentrations are then...
متن کاملA Monte Carlo Study on the Shielding Properties of a Novel Polyvinyl Alcohol (PVA)/WO3 Composite, Against Gamma Rays, Using the MCNPX Code
Background: In recent years, there has been an increased interest toward non-lead radiation shields consisting of small-sized filler particles doped into polymer matrices. In this paper, we study a new polyvinyl alcohol (PVA)/WO3 composite in the presence of high-energy gamma photons through simulation via the Monte Carlo N-Particle (MCNP) simulation code. Materia...
متن کاملMonte Carlo Simulation of a Linear Accelerator and Electron Beam Parameters Used in Radiotherapy
Introduction: In recent decades, several Monte Carlo codes have been introduced for research and medical applications. These methods provide both accurate and detailed calculation of particle transport from linear accelerators. The main drawback of Monte Carlo techniques is the extremely long computing time that is required in order to obtain a dose distribution with good statistical accuracy. ...
متن کاملCharacterization of low, medium and high energy collimators for common isotopes in nuclear medicine: A Monte Carlo study
Introduction:In an ideal parallel-hole collimator, thickness of septal material should be sufficient to stop more than 95% of incident photons. However, some photons pass the septa without interaction or experience scattering before they reach the detector. In this study, we determined different contribution of collimator responses consist of geometrical response, septal penetr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013